

DYNA GEAR Economy

The cost-effective right angle servo gearbox

Highlights

energy costs


The design of the DynaGear Economy range has been influenced by extremely varied applications within many industry sectors.

The DynaGear Economy range has been developed with a dynamic servo drive solution in mind and therefore benefits from many advantages.

- Right angle gearbox, single-stage, ratios 5:1, 8:1, 10:1 and 15:1.
- The compact and rigid design ensures highest performance whilst being space and weight efficient.

Lubricated for life, the gearboxes are virtually maintenance-free (when used under normal conditions).

■ The high efficiency rating of up to 96% saves

Optimized contact pattern assembly for uniform load distribution

High torsional stiffness at the output

Optimized Gleason hypoidgearing for high torque ratings and low backlash

Small moments of inertia at the input

shaft and hub

Fretting- and backlash-free

friction-locked fit between

torque transfer using a

System optimization via variable torsional coupling stiffness

DYNA GEAR Economy DE-DG

The DynaGear Economy series, versions DE-DG, is available with solid or hollow shafts on the output end. For output with a hollow shaft, the shaft is extended so a shrink disc can be fitted

The dimensions of the output correspond to those of our standard DynaGear series.

Performance table/Technical data

DynaEco DE-DG

Size		DE-DG55	DE-DG75	DE-DG90	DE-DG115	DE-DG55	DE-DG75	DE-DG90	DE-DG115
Ratio	i		5/8	/10			1	5	
Output torque									
Nominal torque	T _{2N} [Nm]	35	70	140	260	25	50	95	180
Maximum acceleration	T _{2B} [Nm]	53	105	210	390	38	75	143	270
Emergency stop torque 3	T _{2Not} [Nm]	70	140	280	520	50	100	190	360
Maximum input speed	n _{1max} [min ⁻¹]	6000	6000	5000	4000	6000	6000	5000	4000
Nominal input speed i = 5/8	n _{1N} [min ⁻¹]	3100	2400	2100	1820	_	_	_	-
Nominal input speed i = 10/15	n _{1N} [min ⁻¹]	3800	2900	2600	2250	3800	2900	2600	2250
Backlash ①	j _t [arcmin]	< 7	< 7	< 6	< 6	< 7	< 7	< 6	< 6
Backlash stiffness at output ⑤	Ct21 [Nm/arcmin]	2.5	5.0	12.0	28.0	2.5	5.0	12.0	28.0
Radial force ②	F _{2Rmax} [N]	3300	4900	7200	10000	3300	4900	7200	10000
Axial force ②	F _{2Amax} [N]	1650	2450	3600	5000	1650	2450	3600	5000
Efficiency rating at full load	η [%]	> 96	> 96	> 96	> 96	> 93	> 93	> 93	> 93
Noise level (n ₁ =3000 min ⁻¹)	L _{pA} [dB(A)]	< 66	< 66	< 68	< 68	< 66	< 66	< 68	< 68
Weight approx	m [kg]	2.5	4.2	8.2	13.5	2.5	4.2	8.2	13.5

Service life (SL) [h]: > 15.000 based operation mode S5

Lubrication: see "Technical service and maintenance" page 9

Mounting positions: Any

Operation temperature: $-10~^{\circ}\text{C}$ to $90~^{\circ}\text{C}$

Primary coated RAL 9005 – black

Ex-protection: Ex II 2 D/G c T4

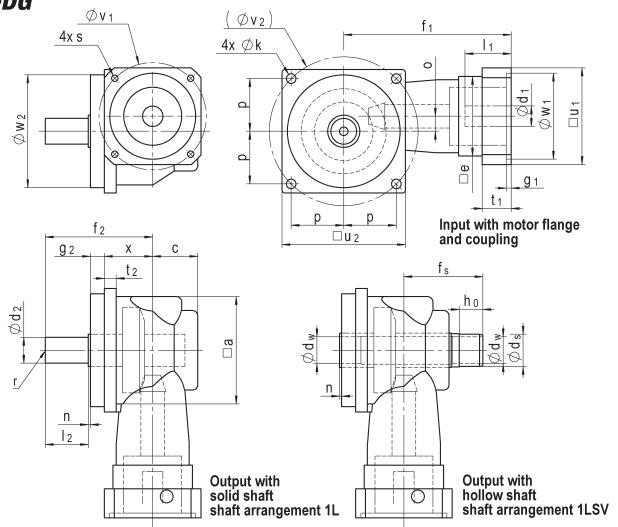
type of protection: IP 64

 \odot At the output, at 2 % load and max. 10 Nm

3 Max 1000 times during the service life of the gearbox

② Resulting force centre of output shaft at output speed 400 min⁻¹

④ At max 1000 cycles per hour, please consider reducing factor in other cases


Mass moment of inertia I_1 related to input [kgcm²] (coupling included)

Ratio i	Size								
nauv i	DE-DG55	DE-DG75	DE-DG90	DE-DG115					
5:1	0.44	1.06	3.6	7.2					
8:1	0.37	0.88	3.0	5.7					
10:1	0.35	0.84	2.9	5.3					
15:1	0.33	0.79	2.7	4.9					

Symbols and units see page 7

Dimensions and Configurations DE-DG

other shaft arrangements on request

Size	□a	C	Х	0	□e	f ₁	g 1	t ₁	g ₂	t ₂	Øk	р	□ u ₂	Ø v ₂	Ø w _{2 g6}
DE-DG55	84	36	37	9	58	130	4.5	20	13	9	6.6	39	90	110.3	89
DE-DG75	100	42	45	14	74	156	4.5	27	13	11	9	49	115	138.6	105
DE-DG90	125	52	58	18	89	187	4.5	33	16	14	11	59	140	166.9	125
DE-DG115	150	63	71	23	107	225	6	40	16	17	13.5	72	170	203.6	150

Input with motor flange and coupling

Size	Version	Ø d ₁	lı	□ u ₁	Ø v ₁	Ø w ₁ ^{F7}	S
	V1	9	23	60	63	40	M4
DE-DG55	V2	11	26	75	75	60	M5
	V3	14	33	75	75	60	M5
	V1	11	26	75	75	60	M5
DE-DG75	V2	14	33	75	75	60	M5
	V3	19	43	90	100	80	M6
	V1	14	33	90	100	80	M6
DE-DG90	V2	19	43	90	100	80	M6
	V3	24	53	115	130	110	M8
	V1	19	43	115	130	110	M8
DE-DG115	V2	24	53	115	130	110	M8
	V3	32	63	140	165	130	M10

① To D DIN 332

Output with solid shaft

Size	Ø d _{2 k6}	l ₂	f ₂	n	r ^Φ
DE-DG55	20	35	87	2	M6
DE-DG75	24	40	100	2	M8
DE-DG90	32	50	126	2	M12
DE-DG115	40	60	146	2	M16

Output with hollow shaft ²

Size	Ø d _w ^{H7}	Ø d _{s f7}	h ₀	fs	n
DE-DG55	20	24	20	64.5	2
DE-DG75	25	30	22	73.5	2
DE-DG90	30	36	26	87	2
DE-DG115	40	50	29	102	2

② Extended shaft for a shrink disk (e.g. Stüwe – Type HSD 22) Delivery with shrink disk on request

DYNA GEAR Economy DE-PL

The DynaGear Economy series, versions DE-PL, is available with solid shafts on the output end.

The dimensions of the output correspond to those of a standard planetary gear.

The DE-PL series can be used to replace planetary gears.

Performance table/Technical data

DynaEco DE-PL

Size		DG-PL55	DE-PL75	DE-PL90	DE-PL55	DE-PL75	DE-PL90
Ratio	i		5/8/10	•		15	•
Output torque							
Nominal torque	T _{2N} [Nm]	35	70	140	25	50	95
Maximum acceleration	T _{2B} [Nm]	53	105	210	38	75	143
Emergency stop torque ③	T _{2Not} [Nm]	70	140	280	50	100	190
Maximum input speed	n _{1max} [min ⁻¹]	6000	6000	5000	6000	6000	5000
Nominal input speed i = 5/8	n _{1N} [min ⁻¹]	3100	2400	2100	_	_	-
Nominal input speed i = 10/15	n _{1N} [min ⁻¹]	3800	2900	2600	3800	2900	2600
Backlash ①	j _t [arcmin]	< 7	< 7	< 6	< 7	< 7	< 6
Backlash stiffness at output ⑤	Ct21 [Nm/arcmin]	2.5	5.0	12.0	2.5	5.0	12.0
Radial force ②	F _{2Rmax} [N]	2200	4050	6200	2200	4050	6200
Axial force ②	F _{2Amax} [N]	1100	2025	3100	1100	2025	3100
Efficiency rating at full load	η [%]	> 96	> 96	> 96	> 93	> 93	> 93
Noise level (n ₁ =3000 min ⁻¹)	L _{pA} [dB(A)]	< 66	< 66	< 68	< 66	< 66	< 68
Weight approx	m [kg]	2.6	4.5	9.0	2.6	4.5	9.0

Service life (SL) [h]: > 15.000 based operation mode S5

Lubrication: see "Technical service and maintenance" page 9

Mounting positions: Any

Operation temperature: $-10~^{\circ}\text{C}$ to 90 $^{\circ}\text{C}$

Primary coated RAL 9005 – black

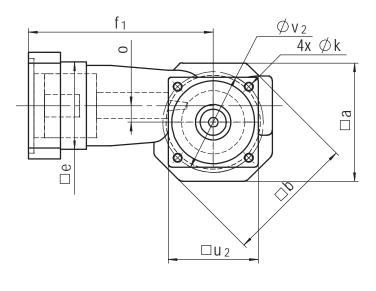
Ex-protection: Ex II 2 D/G c T4

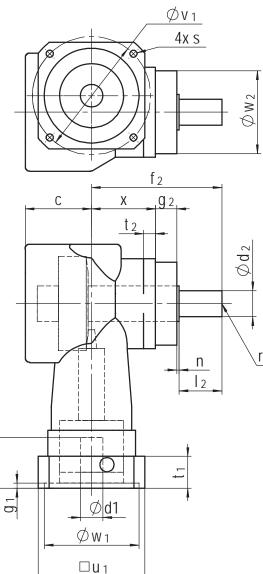
type of protection: IP 64

 $\ensuremath{\mathbb{O}}$ At the output, at 2 % load and max. 10 Nm

② Resulting force centre of output shaft at output speed 400 min⁻¹

- 3 Max 1000 times during the service life of the gearbox
- $\ensuremath{\mathfrak{A}}$ At max 1000 cycles per hour, please consider reducing factor in other cases


Mass moment of inertia I_1 related to input [kgcm²] (coupling included)


Ratio i	Size								
nduv i	DE-PL55	DE-PL75	DE-PL90						
5:1	0.44	1.06	3.6						
8:1	0.37	0.88	3.0						
10:1	0.35	0.84	2.9						
15:1	0.33	0.79	2.7						

Symbols and units see page 7

Dimensions and Configurations DE-PL

Size	□a	□b	C	Х	0	□ e	f ₁	g 1	t ₁	g ₂	t ₂	Øk	□ u ₂	Ø v ₂	Ø w _{2 g6}
DE-PL55	84	91.5	46.5	47	9	58	130	4.5	20	18	8.5	5.5	66	68	60
DE-PL75	100	110	56	54	14	74	156	4.5	27	18	10	6.5	76	85	70
DF-PI 90	125	139	68	68	18	89	187	4.5	33	20	13	9	101	120	90

Input with motor flange and coupling

Size	Version	Ø d ₁	ŀ	□ u ₁	Ø v ₁	Ø w ₁ ^{F7}	S
	V1	9	23	60	63	40	M4
DE-PL55	V2	11	26	75	75	60	M5
	V3	14	33	75	75	60	M5
	V1	11	26	75	75	60	M5
DE-PL75	V2	14	33	75	75	60	M5
	V3	19	43	90	100	80	M6
	V1	14	33	90	100	80	M6
DE-PL90	V2	19	43	90	100	80	M6
	V3	24	53	115	130	110	M8

Output with solid shaft

Size	Ø d _{2 k6}	l ₂	f ₂	n	rΦ
DE-PL55	16	28	95	2	M5
DE-PL75	22	36	110	2	M8
DE-PL90	32	58	148	2	M12

① To D, DIN 332

Symbols and units

Maximum motor acceleration torque	T _{1BMot}	Nm
Nominal output torque	T _{2N}	Nm
Maximum output acceleration	T _{2B}	Nm
EMERGENCY STOP output torque	T _{2Not}	Nm
Maximum input speed	n _{1max}	min ⁻¹
Nominal input speed	n _{1N}	min ⁻¹
Output backlash	jt	arcmin
Torsional output stiffness	C _{t21}	Nm/arcmin
Radial input force	F _{1Rmax}	N
Radial output force	F _{2Rmax}	N
Axial input force	F _{1Amax}	N
Axial output force	F _{2Amax}	N
Efficiency at full load	η	%
Running noise	L _{pA}	dB(A)
Weight	m	kg
Mass moment of inertia	I ₁	kgcm ²
Service life	L _h	h
Run time	RT	min
Duty cycle	DC	%
Ambient temperature	ta	°C
Thermal performance limit	P _{therm}	kW
Performance	Р	kW

www.graessner.de

For entire DynaGear range

Operation mode S5 duty cycle (DC) < 60 % and run time (RT) < 20 min

Maximum existing motor acceleration torque T_{1BMot} [Nm]

Calculate the maximum existing acceleration torque at the gearbox output

 $T_{2Bmax \ exist.} = T_{1BMot} \ x \ i \ [Nm]$

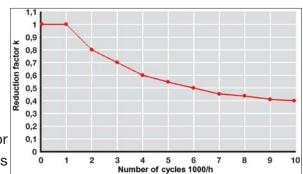
Compare the maximum existing acceleration torque at the gearbox output with the permissible acceleration torque at the gearbox output

T_{2Bmax exist.} ≤ T_{2Bperm.} x k

Existing average speed n_{1exist.} ≤ nominal speed n_{1N}

Valid for an average torque of 30 % of the permissible output torque T_{2N}

Compare the motor dimensional details such as flange size, shaft diameter and shaft length with the gearbox dimensions $\Box u$, d_1 , l_1 [mm]



Compare the radial and axial shaft load with the maximum permissible values

 $F_{2Rexist.} \le F_{2Rmax}[N] F_{2Aexist.} \le F_{2Amax}[N]$

These are guide values, dependent on additional loads. Upon request we calculate these values individually.

For continuous operation S1, please contact us.

Reduction factor for high number of cycles

Example: Given: Servo motor $T_{1Bmax} = 16 \text{ Nm}$

Positioning driveRatio i = 8:1
No of cycles 2000/h

Selection: $T_{2B \text{ max.exist.}} = 16 \text{ Nm x 8} = 128 \text{ Nm}$

Gearbox D90 8:1 1L T_{2B max exist.} ≤ T_{2B zul} x k

 $128 \text{ Nm} \le 210 \text{ Nm x } 0.8 = 168 \text{ Nm}$

Connection dimensions

Motor: Flange \square 105 mm, shaft $d_1 = \emptyset$ 19 mm, $l_1 = 40$ mm Gearbox: Flange \square 115 mm, shaft $d_1 = \emptyset$ 19 mm, $l_1 = 40$ mm

Selected: D90 8:1 1L

Technical service and maintenance

DynaGear and DynaGear Economy Gearboxes

DYNAGEAR gearboxes are supplied ready lubricated for life with a high-quality synthetic oil to CLP DIN 51 517, ISO VG-Class 150 (DIN 51 519). They are therefore maintenance free.

We recommend that for continuous operation close to the thermal performance limit, regular leak controls are undertaken on the shaft seals. After approx 15.000 operating hours, it is advisable to change the oil. Please request instructions which also include advice on lubricants and quantity. Service kits of wear and tear parts with full instructions are available from our service department.

DynaGear High Ratio Gearboxes

DYNAGEAR High Ratio Gearboxes have two separate lubrication chambers.

The hypoid stage is lubricated with a high-quality synthetic oil (synthetic hydrocarbon plus additives) to CLP DIN 51517, ISO VG-Class 150 (DIN 51 519).

The planetary stage is filled with a special grease, consistency 00 to DIN 51818. If used under normal conditions, the gearboxes are considered lubricated for life and are therefore maintenance-free.

We recommend that for continuous operation close to the thermal performance limit, regular leak controls are undertaken on the shaft seals. After approx 15,000 operating hours, it is advisable to change the both the oil and the grease. The gearboxes require disassembly in order to change the lubricants. We will be happy to carry out this work for you at our factory. Should you still wish to change the lubricants yourself, please request instructions which also include advice on lubricants and quantity. Service kits of wear and tear parts with full instructions are available from our service department.

Ordering Example

- **1.** Gearbox range DE-DG = DynaGear Economy DG Page 3
 DE-PL = DynaGear Economy PL Page 5
- 2. Size
- 3. Ratio
- **4.** *Configuration* See pages 4, 6
- 5. Additional data
- Input speeds

Maximum application speed

- Options if required
- Customised design if required

Please include the relevant motor data sheet.

Please note that

All information contained in this catalogue is provided without guarantee and is not binding. In particular, dimensions and values only provide guidance. Any exact, specific requirements must be agreed with us.

Specifications and features listed in the catalogue are subject to a written contract.

Germany

MS-GRAESSNER GmbH & Co. KG THE GEAR COMPANY

Kuchenäcker 11 72135 Dettenhausen Tel.: +49 (0) 71 57 123-0

Fax: +49 (0) 71 57 123-212 E-Mail: mail@graessner.de www.graessner.de

Austria

GRAESSNER GmbH

Perfektastraße 61 Objekt 6/2 1230 Wien

Tel.: +43 (1) 6992430-0 Fax: +43 (1) 6992430-20 E-Mail: graessner@graessner.at

www.graessner.at

For more information on MS-GRAESSNER's worldwide distribution network, please visit: www.graessner.com

MS-Graessner GmbH & Co. KG

THE GEAR COMPANY

BEVEL GEAR

Spiral, Hypoid and Zerol Bevel Gears

- Standard range of products and custom-made versions
- Module ms from 0.5 to 12
- Diameters up to 410 mm
- Shaft angles from 10° to 170°
- More than 60 years of experience
- In-house gearing calculations We manufacture to your drawing or
- advise you of possible alternative ■ Milled or ground gear tooth cutting

POWER GEAR

The high performance bevel gearbox

- High torque, small size
- For highest input speeds
- Ratios from i = 1:1 to 5:1
- Torques up to 7000 Nm
- Output via solid and hollow shaft
- Motor mounting either directly or via coupling and lantern
- Variable ratios and uniform dimensions

DYNA GEAR

The highly dynamic servo right angle gearbox

- Hypoid gearing
- High input speeds at medium to high torques
- Ratios single-stage i = 3:1 to 30:1
- Ratios, two-stage, up to 150:1
- Torques up to 1440 Nm
- Flexible motor mounting via coupling and lantern
- Low backlash < 2 arcmin</p>
- Variable ratios and uniform dimensions

DYNA GEAR Economy The cost-effective servo

- Hypoid gearing
- High input speeds at medium torques
- Ratios single-stage i= 5:1, 8:1, 10:1 and 15:1
- Torques up to 260 Nm
- Flexible motor mounting via coupling and flange
- Backlash < 6 arcmin
- Variable ratios and uniform dimensions

DESIGN GEAR The customised gearbox

- Single-stage gearbox available as gear-change or reversing gearbox
- Forced oil circulation lubrication system gearbox for high speeds and torques
- Labyrinth sealed gearbox with an efficiency of > 99%
- Special gearbox with additional functional elements
- Endless possibilities on request

KSTWINGEAR The bevel helical gearbox

- Two-stage bevel helical gearbox with ratios of up to 75:1
- Torques up to 7500 Nm
- Torsional backlash < 6 arcmin
- Compact design
- Motor mounting either directly or via coupling and lantern
- High torsional stiffness
- High input speeds at high torques
- Variable ratios and uniform dimensions